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Abstract

Process skew is an important factor in the perfor-
mance of parallel applications, especially in large-scale
clusters. Reduction is a common collective operation
which, by its nature, introduces implicit synchroniza-
tion between the processes involved in the communica-
tion and is therefore highly susceptible to performance
degradation due to process skew. A collective opera-
tion with application-bypass does not require the applica-
tion to block in order for the operation to make progress.
Application-bypass collective operations are therefore
highly tolerant of skew. In this paper we describe the de-
sign and implementation of an application-bypass version
of the reduction operation in MPICH over GM. We evalu-
ate our implementation on a 16-node cluster. Under con-
ditions of process skew we find a factor of improvement
of up to 3.3 for our application-bypass reduction ver-
sus the default MPICH implementation. In addition, we
see that this factor of improvement increases with sys-
tem size, indicating that the application-bypass implemen-
tation is more scalable and skew-tolerant than the default
non-application-bypass version. This framework promises
design and development of high-performance and scal-
able collective communication libraries for next-generation
large-scale clusters.

1. Introduction

When we visualize running a parallel application on a
cluster, it’s common to think of all processes involved in
the computation executing in a synchronous manner. For ex-
ample, it’s natural to assume that all processes will start at
the same instant. However, in reality processes may become
unsynchronized or skewed. This may happen for a variety
of reasons including heterogeneous systems consisting of
nodes with different processing capabilities, varying com-
munication latencies between nodes, unbalanced or asym-
metric code where different nodes may be assigned tasks re-
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quiring different amounts of processing resources, and ran-
dom effects such as interrupts or contention for resources
between multiple processes on a given node. Process skew
becomes more prevalent as the size of a cluster grows and
more opportunities for unpredictable delays are introduced.

Process skew is an important factor in the performance
of parallel applications, especially those involving collec-
tive communications. Collective communications [9][7] of-
ten by their nature introduce implicit synchronization in the
form of communication dependencies between processes.
Under conditions of process skew, these dependencies can
cause some processes to wait idly for other processes to
catch up. This results in ineffective CPU utilization, wast-
ing resources that might otherwise be dedicated to useful
processing.

Reduction is a common example of such a collective
communication. In the default MPICH [8] implementation
of reduction, each process involved in the communication
calls the MPI_Reduce function. Internally, MPICH or-
ganizes the processes into a logical tree. Processes wait
to receive messages from their children before sending a
result to their parent and completing MPI_Reduce. So
MPI_Reduce synchronizes the participating processes, re-
quiring each process to wait until all processes below it in
the logical tree have completed MPI_Reduce. This syn-
chronization is not necessary for the majority of the pro-
cesses involved in the communication. It would be more ef-
ficient if the reduction operation could make progress inde-
pendently of the application, allowing parent processes to
continue with other work until their child processes have
sent their data. This technique is known as application by-
pass [2] and is discussed in detail in the next section.

This paper describes our design and implementation of
an application-bypass version of the reduction operation in
MPICH over GM [11]. We discuss the design challenges
that we faced in the process of adapting the synchronous
infrastructure provided by the default MPICH implementa-
tion to support our more flexible application-bypass oper-
ation. These challenges include the maintenance of inter-
mediate reduction state, handling messages that arrive both
earlier and later than normally expected and minimizing the
overhead associated with the mechanisms that we chose to
support asynchronous processing. We have evaluated our
implementation and found a factor of improvement of up to
3.3 under conditions of process skew. Furthermore, we have
observed that the factor of improvement increases with sys-
tem size, indicating that our application-bypass implemen-
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tation is more scalable and skew-tolerant than the default
non-application-bypass version.

The remainder of this paper is organized as follows. In
the next section we discuss the basic concepts of applica-
tion bypass and how they can be applied to the reduction
operation. In Section 3 we provide an overview of GM and
MPICH over GM. The design challenges we encountered
while implementing our application-bypass reduction oper-
ation are discussed in Section 4 and then the details of our
implementation are covered in Section 5. In Section 6 we
evaluate the performance of our implementation and then
we present our conclusions in Section 7.

2. Basic Concepts behind Application-Bypass
Reduction

The goal in coding an application-bypass operation is to
eliminate the need for applications to block while the op-
eration makes progress. This sort of optimization is ideal
for operations such as broadcast and reduction where there
is no implied global synchronization between processes. It
could even benefit synchronizing operations like barrier and
all-reduce if they are implemented in a split-phase manner.

In MPICH, each process involved in a reduction calls
the MPI_Reduce function at the application level to initi-
ate the operation. Internally, MPI_Reduce organizes the
processes into a logical binomial tree and the operation
is then performed using point-to-point communication be-
tween processes. Figure 1 illustrates such a tree for eight
processes. The root process is shown in black, internal pro-
cesses are colored gray and leaf processes are shown in
white. The arrows between processes indicate the direction
of point-to-point messages associated with the reduction.

0
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Figure 1. Example binomial tree used to orga-
nize point-to-point communications between
eight processes involved in a reduction op-
eration. The root node is shown in black, in-
ternal nodes are colored gray and leaf nodes
are shown in white. The arrows between pro-
cesses indicate the direction of messages in-
volved in the reduction.

When calling MPI_Reduce, each process provides a
buffer containing its input for the operation. The root pro-
cess also provides an additional buffer to accept the op-
eration results. While leaf processes simply need to send
their input to their parents, all other processes must wait

to receive results from their children before they can per-
form the arithmetic operation associated with the reduc-
tion. This organization introduces dependencies between
processes. When processes become skewed, those which
are parents in the tree may have to wait idly on children that
are late. Application-bypass techniques eliminate the syn-
chronous nature of these dependencies so that parent pro-
cesses can proceed in spite of the late arrival of children at
the MPI_Reduce point.

The default MPICH implementation could be enhanced
using application-bypass techniques. The processes that can
benefit from such enhancements are the internal ones. The
behavior of the leaf processes need not be optimized as their
only action is to perform a send to their parent. Similarly,
the behavior of the root node can not benefit from optimiza-
tion. Per the MPI standard, MPI_Reduce is implemented
in a blocking fashion, so the root process expects the func-
tion call to return only when the reduction has completed
across all processes. However, a split-phase implementation
would enable optimization of the root node as well.

Figure 2 shows example time lines for a reduction in-
volving four processes. Each large vertical arrow represents
the progress of the operation for a given process. The por-
tions of the large arrows shown in gray represent CPU uti-
lization associated with the reduction. The small horizontal
arrows represent point-to-point messages associated with
the reduction. In this example, node zero is the root node,
nodes one and three are leaf nodes and node two is an inter-
nal node. Note that the processes are slightly skewed, with
nodes zero and two starting the reduction at approximately
the same time, node one following shortly thereafter and
node three being the last to begin.

Figure 2(a) shows the default non-application-bypass
implementation. We can see that node two must wait idly
on node three, which is late due to process skew. Figure 2(b)
illustrates the application-bypass implementation. Here we
can see that node two’s reduction processing has been split
into two components. The first portion is performed syn-
chronously and is associated with the call to MPI_Reduce.
Instead of waiting for the late child (node three), node two
returns from MPI_Reduce and delegates the remainder
of the reduction to asynchronous processing. The reduction
operation resumes only when the message from node three
finally arrives, and the time in between the synchronous and
asynchronous portions can be utilized for other processing.

Under conditions of process skew, application-bypass
techniques can reduce both the amount of time that pro-
cesses spend waiting on each other and the amount of im-
plicit synchronization associated with collective operations.
These improvements can help reduce the amount of CPU
utilization associated with the operation and increase the
opportunity for overlap of communication and computa-
tion. The benefits of application-bypass operations are es-
pecially relevant in large-scale clusters where skew between
processes becomes inevitable.

3. Overview of GM and MPICH over GM

GM [11] is a user-level message-passing subsys-
tem for Myrinet networks. Myrinet [1] is a low-latency,
high-bandwidth interconnection network that employs pro-
grammable network interface cards (NICs), cut-through
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Figure 2. Example time line for four pro-
cesses involved in a reduction operation. The
large vertical arrows represent the progress
of the operation for each process. The gray
portions of the large arrows represent CPU
utilization associated with the reduction.
Each small horizontal arrow represents a
point-to-point message involved in the reduc-
tion.

crossbar switches and operating-system-bypass tech-
niques to achieve full-duplex 2 Gbps data rates. GM con-
sists of a lightweight kernel-space driver, a user-space li-
brary and a control program which executes on the NIC
processor. The kernel-space code is only used for house-
keeping purposes like allocating and registering memory.
After taking care of such initialization tasks, the user-space
library can communicate directly with the NIC-based con-
trol program, removing the operating system from the
critical path.

MPI [10] is a standard interface for message passing in
parallel programs. MPICH [8] is the reference implemen-
tation of MPI and has been ported to a variety of hardware
platforms including GM over Myrinet. As previously men-
tioned, the standard MPICH implementation does not in-
clude application-bypass techniques. In order to illuminate
the design challenges discussed in the next section, we will
first highlight some of the relevant MPICH implementation
details.

One such detail is the way in which MPICH handles the
receipt of messages, both those which are expected by the
application and those which are not. While there are mul-
tiple functions that may be used to receive messages with
different semantics, we focus on the default case in this dis-
cussion. When a process is ready to receive a message, it
calls the MPI_Recv function, providing criteria to iden-
tify the message to be received as well as an appropriate

buffer for storage of the message. If a message arrives be-
fore a matching call to MPI_Recv has been made, MPICH
allocates a temporary buffer, copies the message into the
buffer and then adds it to the unexpected queue. When a
process calls MPI_Recv, MPICH first searches the unex-
pected queue for a matching message. If a match is found,
it simply copies the message from the unexpected queue to
the buffer provided by the application. Otherwise, it polls
the network until a matching message is received, at which
point the message is copied into the application buffer and
returned.

Another notable detail relates to the way GM uses mem-
ory when sending messages. GM can only send data located
in memory which has been registered for DMA transfers
(pinned). Since pinning and unpinning memory requires
relatively expensive system calls, MPICH over GM uses
two send modes to efficiently handle both small and large
messages. Small messages are sent using eager mode and
large messages are sent in rendezvous mode. Basically, in
eager mode message data is copied into a pre-pinned buffer
for sending, while in rendezvous mode the message data
is pinned in-place and sent from its original location. Ea-
ger mode eliminates the overhead of pinning for small mes-
sages at the expense of a memory copy, while rendezvous
mode eliminates the overhead of copying for large messages
at the expense of pinning memory.

4. Design Challenges

This section discusses the design challenges we en-
countered while implementing application-bypass reduc-
tion. The specifics regarding our solutions to each issue will
be addressed in detail in the next section.

4.1. Maintenance of Intermediate State

Recall that in order to minimize the impact of process
skew, we would like to split the reduction processing into
synchronous and asynchronous components. A requirement
for this approach is the maintenance of intermediate state
associated with the reduction. First, note that a parent node
may have multiple children, each of which may be pro-
cessed synchronously or asynchronously at different points
in time. Therefore, we need to keep track of the running
result of the reduction operation between the initial syn-
chronous processing and potentially multiple periods of
asynchronous processing.

Second, note that in addition to processing messages
from children, internal nodes must also send their final re-
sult to their parent. However, this must not happen until all
children have been processed. So we need a way to know
when the processing of all children has completed and the
send to the parent may be performed.

Also, if the last child processed is handled by the asyn-
chronous portion of the code, then we need to be able to
determine the appropriate parent associated with the reduc-
tion. The parent-child relationships between nodes can vary
between reduction instances depending on which process
is designated as the root of the reduction. A node’s parent
is calculated during the synchronous call to MPI_Reduce
and must be recorded for potential use during asynchronous
processing.
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4.2. Handling Early Messages

Another challenge involved handling early or unexpected
messages. The semantics for unexpected messages are sim-
ple in the default MPICH implementation. Because all
reduction processing is performed synchronously, unex-
pected messages are simply those messages that arrive
before the application calls MPI_Reduce. However, in
our application-bypass implementation we need to perform
some additional checking due to the asynchronous nature
of the processing. First, as in the non-application-bypass
case, the message must fail to match a receive associated
with the synchronous processing in MPI_Reduce. Sec-
ond, the message must also fail to satisfy a pending receive
which is being managed asynchronously after exiting a call
to MPI_Reduce. If the message matches a pending asyn-
chronous receive, then it’s actually a late message as op-
posed to an unexpected message, and must be handled ap-
propriately as discussed below. Otherwise, the message is
truly unexpected and must be saved for later processing.

4.3. Handling Late Messages

As mentioned above, late messages are those messages
associated with a reduction operation that arrive after exit-
ing a call to MPI_Reduce. These messages must be han-
dled by the asynchronous component of our application-
bypass implementation. So first, we need a way to differ-
entiate these late messages from other messages and trig-
ger the asynchronous processing. We also need to be able
to match late messages to the proper reduction instance, as
multiple reductions may be active concurrently and over-
lapped due to skew. For example, consider the eight-node
case illustrated in Figure 1. Assume that our application per-
forms several reductions back to back and that process six
is consistently late in performing its send to process four.
Each time process six is late, process four will delegate
the associated operation to the asynchronous component of
the implementation. Since there are several reductions per-
formed back-to-back, there may be several outstanding re-
ceives from process six, each associated with a separate re-
duction instance. So when process four finally receives a
message from process six, it needs to be able to match it to
the appropriate reduction instance in order to maintain cor-
rectness.

4.4. Efficient Use of Interrupts

In order to support splitting the processing of reduc-
tion operations into synchronous and asynchronous com-
ponents, some mechanism must be used to trigger the asyn-
chronous processing upon receipt of late messages. One po-
tential solution would involve using a dedicated thread to
monitor incoming messages and activate the asynchronous
processing as necessary. Another method would involve
generating an interrupt upon the receipt of a late mes-
sage. Both alternatives have benefits and disadvantages.
The thread-based option would consume additional CPU re-
sources while polling for late messages, but would not re-
quire the overhead of interrupts. The interrupt-based option
would incur a certain amount of interrupt overhead with the
arrival of late messages. However, this overhead would only

occur when asynchronous processing is actually required,
as opposed to the constant overhead of polling for late mes-
sages.

Based on our previous experience with the implemen-
tation of application-bypass broadcast [6], we decided
to use an interrupt-based approach. Since interrupts in-
cur a substantial performance penalty, this introduced
another challenge in how to avoid the generation of un-
necessary interrupts. For example, interrupts need not
be generated while MPICH is already checking for re-
ceives within MPI_Reduce. They are also unnecessary
if there are no outstanding children to be processed asyn-
chronously. In this case, messages can be unexpected but
not late. Also, note that interrupts are only required for in-
ternal nodes, as the root node must perform all of its
processing synchronously and the leaf nodes have no chil-
dren.

4.5. Reducing Frequency of Late Messages

As mentioned above, interrupts are not necessary
if MPICH is already checking for receives while in-
side MPI_Reduce. We explored a potential optimiza-
tion involving the addition of a small delay before ex-
iting MPI_Reduce in the case where all children had
not been processed. By delaying, we hoped to allow re-
ceives from the outstanding children to complete and
thus avoid interrupts. The crucial decision here is how
long to delay. If the delay is too short, then late chil-
dren will not be able to catch up, but if the delay is too
long, then unnecessary latency will be incurred.

We experimented with a simple scheme in which we cal-
culated the delay based on the number of processes involved
in the reduction. A more sophisticated scheme could be con-
structed by taking into account the position of the parent
and child processes in the logical tree. However, such cal-
culations become quite speculative when random skews are
involved and we are still investigating these issues.

5. Our Implementation

In this section we present the details of our implemen-
tation of application-bypass reduction. The section is orga-
nized as follows. First we discuss the changes that we made
to the MPICH infrastructure to support application-bypass
processing. Next we walk through both the asynchronous
and synchronous components of the processing to illustrate
the associated logic.

5.1. Infrastructure Changes

First, we modified GM 1.5.2.1 to include the ability to
generate signals from within the NIC-based control pro-
gram. We added a new collective packet type for use when
sending messages related to application-bypass reduction.
In addition, we added the capability to disable and enable
signals from within the MPICH layer via calls to the GM li-
brary. These two modifications are used together to mini-
mize the number of signals that are generated. Signals are
only generated by the NIC for messages of the new col-
lective packet type, isolating them to only those situations
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where they are actually required. We initialize MPICH with
signals in a disabled state, as initially there can not be any
outstanding reductions. We only enable signals when out-
standing reductions need to be processed asynchronously,
and then again disable signals as soon as all outstanding re-
ductions have been completed. Details on exactly how and
when we choose to enable and disable signals are included
below. When a signal is received by the host, it triggers
the activation of the MPICH progress engine so that asyn-
chronous processing may be performed.

The remainder of the changes were made to MPICH over
GM version 1.2.4..8a. As mentioned previously, we needed
to develop a strategy for handling both unexpected and late
messages. We explored one solution which involved using
the non-blocking versions of the MPICH send and receive
primitives for internal point-to-point communication within
the collective reduce operation. The default MPICH imple-
mentation uses the blocking versions of the send and re-
ceive primitives. By switching to the non-blocking versions
we hoped to gain the extra control we needed to support
asynchronous processing, while still re-using as much as
possible of the existing MPICH infrastructure. While this
solution did enable reuse of the existing MPICH message
matching and queuing mechanisms, it also required the al-
location and management of additional buffers for use in the
non-blocking receives. In addition, it introduced extra com-
plexity associated with trying to use the MPICH infrastruc-
ture in ways other than those in which it was intended to be
used.

We instead chose to implement our own unexpected
queue specifically for application-bypass messages. This
enables us to manage unexpected messages in an efficient
manner, reducing the maximum number of required mes-
sage copies from two to one. It also prevents our opti-
mizations from affecting the common case of non-collective
point-to-point communications, which are left to the default
MPICH mechanisms. In addition to the unexpected queue,
we also added a descriptor queue to manage descriptors
containing state information for pending reductions. Each
descriptor includes the intermediate result of the reduction
operation, the identity of the parent process to which re-
sults should be sent and a list of children from which re-
ceives are pending. The child list is also used for match-
ing late messages to the appropriate entry in the descriptor
queue (i.e. the appropriate reduction instance). Details on
how both queues fit into our implementation are provided
below.

5.2. Asynchronous Processing

Recall that in MPICH, each process involved in a re-
duction calls the MPI_Reduce function at the application
level to initiate the operation. This call to MPI_Reduce
is the synchronous component of our implementation.
We also added code to enable pre-processing of incom-
ing collective-communication packets before they are
examined by the MPICH matching and queuing mecha-
nisms. This pre-processing comprises the asynchronous
portion of our implementation.

When a collective-communication packet arrives, we
first check to see whether the current process is the root of
the collective communication with which the packet is as-

sociated. If so, then no extra asynchronous action is taken.
This is because the behavior of the root process is necessar-
ily synchronous, so we can utilize the normal synchronous
point-to-point communications. In such a case where we de-
cide not to process a packet, it is handled by the default
MPICH mechanisms.

If the current process is not the root, the descriptor queue
is searched to see if the source of the packet matches an ex-
isting reduction. If so, the corresponding operation is per-
formed and the descriptor is updated to reflect the fact that
the child has been processed. If all children have been pro-
cessed, the final result is sent to the parent and the descriptor
is removed from the queue. If this action renders the queue
empty (i.e. there are no outstanding reductions) then sig-
nals are disabled.

If the packet fails to match an entry in the descriptor
queue, the message is added to the unexpected queue for
later processing. Note that if the message is expected it
is processed directly from the buffer associated with the
packet, eliminating the need to copy it into a buffer associ-
ated with a point-to-point receive as in the default MPICH
implementation.

5.3. Synchronous Processing

As mentioned above, the synchronous portion of our im-
plementation takes place within MPI_Reduce. First, we
determine whether or not to perform a given reduction
in application-bypass mode. This decision is made based
on the size of the message. If the size of the message is
within the limits of eager-mode processing, we proceed in
application-bypass mode. Otherwise, we simply perform a
standard non-application-bypass reduction. We have not yet
investigated a rendezvous-mode implementation due to the
additional complexities involved in buffer management.

Assuming the reduction is being processed in
application-bypass mode, we first ensure that signals
are disabled as we will be explicitly making progress while
inside MPI_Reduce. Next, we build a descriptor contain-
ing the intermediate state needed to manage the reduction
operation or operations as well as a list of the child or chil-
dren of the current process. This descriptor is added to a
queue of outstanding reductions.

From this point onward, the reduction may actually be
processed in parallel by both MPI_Reduce and the asyn-
chronous routine. The logic within MPI_Reduce basically
walks through the list of children in the reduce descriptor,
checking for unexpected messages and making progress if
pending receives are detected. When progress is made, the
asynchronous portion of the code will process expected and
late messages as detailed above. If an unexpected message
from a child is encountered, the corresponding operation is
performed and the associated descriptor is updated to re-
flect the fact that the child has been processed. If all chil-
dren are processed within MPI_Reduce, the final result is
sent to the parent and the descriptor is removed from the
queue. If at the end of MPI_Reduce the descriptor queue
is not empty, then signals are enabled.

Note that even though unexpected messages must be
buffered in the unexpected queue, they are processed di-
rectly from the unexpected queue in MPI_Reduce, elimi-
nating the need for a second copy to a buffer associated with
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a point-to-point receive as in the default MPICH implemen-
tation.

6. Experimental Results

We evaluated our implementation on a cluster of 16
quad-SMP 700-MHz Pentium-III nodes with 66-MHz/64-
bit PCI. The nodes were connected via a Myrinet-2000 net-
work consisting of PCI64B network interface cards with 2
MB of memory and 133-MHz LANai 9.1 processors con-
nected to 16 ports of a 32-port switch. Our application-
bypass implementation is based on MPICH 1.2.4..8a over
GM 1.5.2.1 and all comparisons were performed against the
original, unaltered software packages of the same versions.

We created a pair of microbenchmarks for use in eval-
uating our implementation. The first microbenchmark mea-
sures the overall latency of a reduction, while the second mi-
crobenchmark measures the CPU utilization associated with
performing a reduction under conditions of varying process
skew.

The latency benchmark works as follows. First, we de-
termine the one-way message latency between the root node
and the node which is furthest away from the root in the log-
ical tree (the last node). Next, we time a series of 10,000 re-
ductions and take the average, using a barrier to separate it-
erations. We start timing just before the last node begins the
reduction. Then, when the root node completes the reduc-
tion, it sends a notification message to the last node, which
stops timing and subtracts off the one-way latency associ-
ated with the notification message to determine the total re-
duction latency.

While overall latency is important, if we assume that
conditions involving process skew will be common, a bet-
ter measure of performance is the amount of CPU utilization
associated with the reduction. Skew will inevitably increase
the overall latency, but if we can reduce the CPU utiliza-
tion, additional computation may be performed while the
reduction completes asynchronously. For the CPU utiliza-
tion benchmark, in addition to varying the number of nodes
and the message size, we also introduce a variable amount
of delay at each node to simulate process skew. First, we
convert a given maximum amount of delay from microsec-
onds to busy-loop iterations. All delays are then generated
using busy loops as opposed to absolute timings so that the
CPU utilization associated with asynchronous processing
may be captured. Next, we perform a series of 10,000 re-
ductions and take the average across all nodes, using a bar-
rier to separate iterations.

Within each loop iteration, the timing measurements are
taken as follows. We first start timing, then introduce a ran-
dom amount of delay between zero and the maximum de-
lay, perform the reduction, introduce a catchup delay and fi-
nally stop timing. The skew delay as well as the catchup
delay are then subtracted from the measured time at each
node to calculate the CPU utilization. The catchup delay is
equal to the maximum skew delay plus a conservative esti-
mate of the maximum reduction latency. The intent here is
to be sure to delay long enough to capture all asynchronous
processing in the overall time measurement.

The remainder of this section is organized as follows.
First we present latency and CPU utilization results under
conditions with no process skew, which is very optimistic

in a large-scale cluster. Note that this is the worst-case sce-
nario for our implementation, where we see all of the over-
head involved in the application-bypass techniques. How-
ever, we next present results under conditions of varying
process skew. These are the common conditions in large-
scale clusters. Our solution is designed for such scenarios
and we can clearly see its benefits over the default non-
application-bypass implementation.

6.1. Results without Process Skew

Figure 3 shows the results of the latency bench-
mark for 2, 4, 8 and 16 nodes with zero process skew and
single-element double-word messages. For small num-
bers of nodes, the latency of the application-bypass and
non-application-bypass implementations are nearly identi-
cal. However, once the number of nodes increases past four,
the asynchronous component of the application-bypass im-
plementation begins to be utilized, resulting in the differ-
ence in latency due to overhead from signals. While not il-
lustrated here, we have observed that this latency penalty
remains fairly constant at increased message sizes.
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Figure 3. Average latency of application-
bypass (ab) and non-application-bypass
(nab) reduction for 2, 4, 8 and 16 nodes
with zero process skew and single-element
double-word messages.

Figure 4 shows the results of the CPU-utilization bench-
mark for 2, 4, 8 and 16 nodes with zero process skew
and double-word messages of 4, 32 and 128 elements. We
can see that as the number of nodes increases, the per-
formance of the application-bypass implementation im-
proves. Even for our relatively small 16-node cluster, the
application-bypass implementation eventually outperforms
the non-application-bypass implementation for all mes-
sages greater than four elements in size. This indicates
that the application-bypass implementation is more scal-
able with respect to the number of nodes involved in an
operation. We also see that the application-bypass imple-
mentation begins to outperform the non-application-bypass
implementation at smaller numbers of nodes as the mes-
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sage size increases. This illustrates the benefit of the re-
duced number of message copies in the application-bypass
implementation.
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Figure 4. Average CPU utilization of
application-bypass (ab) and non-application-
bypass (nab) reduction for 2, 4, 8 and 16
nodes with zero process skew and 4, 32 and
128-element double-word messages.

6.2. Results with Process Skew

Figure 5(a) shows the results of the CPU-utilization
benchmark for 16 nodes with increasing amounts of pro-
cess skew and double-word messages of 4, 32 and 128 el-
ements. We can see that the application-bypass implemen-
tation consistently outperforms the non-application-bypass
implementation for all but the smallest amounts of skew. As
the amount of skew increases, the non-application-bypass
implementation spends more and more time polling the net-
work for messages from late child nodes. However, the
application-bypass implementation simply notes that there
are pending receives from these late child nodes and then
processes the messages asynchronously whenever they fi-

nally arrive. The overhead associated with signals in the
application-bypass implementation is quickly overtaken by
the overhead due to polling in the non-application-bypass
implementation. Figure 5(b) shows a factor of improvement
of 3.3 for four-element messages when the maximum skew
is 1,000 ��.
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Figure 5. Average CPU utilization of
application-bypass (ab) and non-application-
bypass (nab) reduction for 16 nodes with
varying process skew and 4, 32 and 128-
element double-word messages.

Figure 6(a) shows the results of the CPU-utilization
benchmark for 2, 4, 8 and 16 nodes with a maximum
process skew of 1,000 �� and double-word messages of
4, 32 and 128 elements. These results confirm that the
trends demonstrated in Figure 5 apply for varying num-
bers of nodes. Again, the application-bypass implemen-
tation consistently outperforms the non-application-bypass
implementation with Figure 6(b) showing a maximum fac-
tor of improvement of 3.3 for 16 nodes and four-element
messages. Furthermore, we can see that the factor of im-
provement increases with the number of nodes, demonstrat-
ing the enhanced scalability of the application-bypass im-
plementation.
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Figure 6. Average CPU utilization of
application-bypass (ab) and non-application-
bypass (nab) reduction for 2, 4, 8 and 16
nodes with maximal process skew and
4, 32 and 128-element double-word mes-
sages.

7. Conclusions and Future Work

We have described both the design challenges and imple-
mentation details of our application-bypass version of re-
duction in MPICH over GM. Upon evaluation of our im-
plementation, we found a factor of improvement of up to
3.3 when compared to the default non-application-bypass
MPICH implementation under conditions of process skew.
Furthermore, we note that the factor of improvement in-
creases with system size, indicating that the skew-tolerant
benefits of our application-bypass implementation will lead
to better scalability than the non-application-bypass imple-
mentation on larger clusters.

In the future, we intend to evaluate the performance of
application-bypass operations on large-scale clusters. We
also intend to perform application-based evaluations to bet-
ter understand how application-bypass solutions perform
under real loads. Another area of investigation which we
plan to pursue is the incorporation of NIC-based techniques

[4][5][3] into our application-bypass implementations. Us-
ing NIC-based techniques, part or all of the operation may
be performed on the NIC processor, as opposed to being
performed on the host. This frees the host processor for use
in other computation, naturally bypassing the application.
Such abilities will deliver further advantages to the pro-
posed framework.

Additional Information

Additional papers related to this research can be ob-
tained from the Network-Based Computing Laboratory
(http://nowlab.cis.ohio-state.edu) and Parallel Architec-
ture and Communication Group (http://www.cis.ohio-state.
edu/�panda/pac.html) web pages.
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